
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Pub„c reoort.na burden for ,„„ coHectjon of -nfoma„on „ ---d <o -era^^^^ ?£ "Ä

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
FINAL/01 FEB 92 TO 30 JUN 95

i. TITLE AND SUBTITLE
ORTHOGONAL INTERCONNECTION NETWORKS FOR
MASSIVELY PARALLEL COMPUTERS

6. AUTHOR(S)

PROFESSOR ISAAC D. SCHERSON
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

DEPARTMENT OF INFORMATION & COMPUTER SCIENCES
UNIVERSITY OF CALIFORNIA
IRVINE, CA 92717-3425

5. FUNDING NUMBERS

2304/FS
F49620-92-J-0126

S. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
110 DUNCAN AVE, SUTE B115
BOLLING AFB DC 20332-0001

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

8. PERFORMING ORGANIZATION

AFOSR-TR-95

AGENCY Kerun,

F49620-92-J-0126

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED

13. ABSTRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

This final report is a cumulative summary of our group's research accomplishments
under the AF0SR grant number F49620-92-J-0126. Over the past three years, our work
has spanned the areas of architectures, operating system policies, performance
analysis and algorithms for parallel processing.

DTI© QUALITY INSPECTED 8

U. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

SAR(SAME AS REPORT)

NSN 7540-01-280-5500
Standard Form 298 (Rev. 2-89)-
Preserved by ANSI Std Z39-18
298-102

AFOSR Final Technical Report

Grant Number:

Proposal:

F49620-92-J-0126

Orthogonal Interconnection Networks

for Massively Parallel Computers

(Original Control Number 92NM002)

Program Director:

Principal Investigator:

Major David Luginbuhl, AFOSR/NM.

Professor Isaac D. Scherson.

Research Associates: Brian D. Alleyne1, Luis Miguel Campos,

Chi-Kai Chien2, David A. Kramer3,

Umesh Krishnaswamy, Vara Ramakrishnan,

Veronica L. Reis, Raghu Subramanian.

Department of Information & Computer Science

University of California, Irvine, CA 92717-3425

1 Currently with Integrated Telecom, Washington, D.C.
2Currently with Factset Corporation, San Mateo, CA.
3Currently with Thinking Machines Corporation, Cambridge, MA.

1

Contents

1 Introduction 4

2 Research Objectives 4

3 Research Accomplishments 5

4 Papers Acknowledging the Grant 6

5 Personnel Supported by the Grant 8

6 Significant Events 9

7 Research Interactions 9

7.1 Advisory Consultation 9

7.2 Distinguished Lectures by P.I 10

7.3 Other Professional Activities of P.I 11

A Data-Routing Networks 12

B Barrier-Synchronization Networks 13

C Performance Evaluation 13

D Routing Algorithms 15

D.l On-line Routing 16

D.2 Off-line Routing 17

E Dynamic Precision Algorithms 18

19951017 029

F Parallel Job Scheduling 19

G Parallel Virtual Memory 20

Aooession FOP

■IIS GRA&I

DTIC TAB
Unamiouitced
Justification.

D
D

By_ _________

Availability Codes

Mat

r
Avail and/öst

Spsci&l

v.J

1 Introduction

This final technical report is a cumulative summary of our group's research accomplishments

under the AFOSR grant number F49620-92-J-0126. Over the past three years, our work

has spanned the areas of architectures, operating system policies, performance analysis and

algorithms for parallel processing.

In Section 2, we describe what the objectives of this research were. In Section 3, we

outline our research accomplishments and progress towards achieving the above objectives.

Section 4 gives a chronological list of papers acknowledging this grant. Section 5 lists the

graduate students and principal investigator suppported by this grant. In Section 6, we

mention significant events like promotions and graduations. Finally, professional interactions

(such as advisory consultations and invited talks) are covered in Section 7. (There are also

a set of appendices with detailed information on our research, and a set of graphical slides

to complement the appendices.)

2 Research Objectives

Our original proposal (in 1992) raised several problems related to interconnection networks.

As we went along, it became increasingly clear that various architectures and OS issues

depend on each other. Problems in one area quickly led to problems in another. Between

1992 and now, the scope of our work expanded from interconnection networks to span such

areas as synchronization, performance evaluation, job scheduling and virtual memory.

One of the larger goals of our research was to demonstrate that there is a middle-ground

between formal but inapplicable research (which the academia is often accused of), and

practical but heuristic work (which comes out of the industry). This report describes our

fruitful collaboration with MasPar Corporation as one example where we successfully found

this middle-ground.

3 Research Accomplishments

This section describes our research accomplishments under the grant. We must restrict

ourselves to a quick summary here; for more details, the reader is referred to the appendices,

as specified by the table below:

Area Research Topic Appendix

Architecture Design of Data-Routing Network A

Design of Barrier-Synch Network B

Performance Evaluation C

Algorithms Routing Algorithms D

DP (Numerical) Algorithms E

Operating Systems Parallel Job Scheduling F

Parallel Virtual Memory G

Design of Data-Routing Network: Most commercial massively parallel computers such

as Cray T3D, Thinking Machines CM-5, use bi-directional networks. However there is

little insight into why they chose the network that they chose. Chi-Kai Chien's thesis

developed a comprehensive methodology to answer the above question.

Design of Barrier-Synchronization Network: Synchronization barriers are often nested

within one another due to the control block structure. Past methods implement such

nested barriers in software. Vara Ramakrishnan has, on the other hand, developed two

hardware schemes to implement nested barriers — these have the advantage of being

more than an order of magnitude faster than the software schemes.

Performance Evaluation: We proposed a new approach to performance evaluation based

on performance vectors. This approach enables the estimation of detailed machine

characteristics, rather than naiveMflop ratings, and consequently yields many valuable

insights into bottlenecks etc.. Umesh Krishnawamy's thesis demonstrates the success

of this approach on both workstations and supercomputers.

Routing Algorithms: We developed both on-line and off-line algorithms for a class of

networks called Expanded Delta Networks (EDN). Since the global router on the Mas-

Par MP-1 and MP-2 is similar to an EDN, we were able to adapt all of our algorithms

to it. It turned out that our routing algorithms were significantly better than the ones

used by MasPar itself; this has resulted in a fruitful collaboration and technology-

transfer. (A letter from MasPar's Director of Architecture is included as Enclosure 1.)

This work was by Brian Alleyne and Raghu Subramanian.

Dynamic Precision Algorithms: Dynamic Precision (DP) numerical algorithms vary

the precision of data during program execution in order to improve performance. We

proposed an architecture called P3, whose multigauging abilities make it particularly

suited to DP algorithms. David Kramer's thesis showed that, by carefully reducing

the precision of data when safe to do so, one can achieve a 3x speed-up on the average.

Parallel Job Scheduling: Parallel job scheduling is the problem of how to share a parallel

machine among several parallel jobs. There are two orthogonal choices — time-slicing

and space-slicing. Raghu Subramanian's thesis proves that, contrary to popular wis-

dom, time slicing is the most efficient scheduling policy when jobs arrive and depart

from the system dynamically.

Parallel Virtual Memory: Although well understood in traditional operating systems,

virtual memory is not a reality for parallel computers. Our research attempts to

understand the parameters that influence the efficacy of virtual memory. Ongoing

experiments point in the direction of dynamic paging policies.

4 Papers Acknowledging the Grant

1. B.D. Alleyne and I.D. Scherson, Expanded Delta Networks for Very Large Parallel

Networks, Proceedings of the International Conference on Parallel Processing, pp I-

127-131, August 1992.

2. C-K. Chien, and I.D. Scherson, Self Routing Least Common Ancestor Networks, Pro-

ceedings of the Frontiers of Massively Parallel Processing, pp 513-514, October 1992,

(Poster paper).

3. B.D. Alleyne and I.D. Scherson, Permutation Routing in 2-Stage Recirculating Delta

Networks, Proceedings of the Frontiers of Massively Parallel Computation, Vol. 1, pp.

502-503, October 1992, (Poster Paper).

4. D.A. Kramer, Efficient Bit-Parallel Supercomputer Architectures and Algorithms, Ph.D.

Thesis, Princeton University, January 1993.

5. 4 I.D. Scherson, and C.-K. Chien, Least Common Ancestor Networks, Proceedings of

the International Parallel Processing Symposium, pp 507-513, April 1993.

6. 4I.D. Scherson, and R. Subramanian, Efficient Off-line Routing of Permutations on

Restricted Access Expanded Delta Networks, Proceedings of the International Parallel

Processing Symposium, pp 284-290, April 1993.

7. I.D. Scherson and A.S. Youssef (Editors), Interconnection Networks for High-Performance

Parallel Computers, IEEE Computer Society Press, Los Alamitos, CA, 1994.

8. B.D. Alleyne and I.D. Scherson, On Evil Twin Networks and the Value of Limited

Randomized Routing, Proceedings of the Proceedings of the International Parallel Pro-

cessing Symposium, pages 566-575, April 1994.

9. R. Subramanian and I.D. Scherson, An Analysis of Diffusive Load Balancing, Pro-

ceedings of the 6th ACM Symposium on Parallel Algorithms and Architectures, pages

220-225, June 1994, Cape May, NJ.

10. B.D. Alleyne, Methodologies for Analysis and Design of Data Routers in Large SIMD

Computers, Ph.D. Thesis, Princeton University, June 1994.

11. I.D. Scherson, and C-K. Chien, Least Common Ancestor Networks, VLSI Design,

Volume 2, Number 4, pages 353-364, April 1995.

12. V. Ramakrishnan, I.D. Scherson and R. Subramanian, Efficient Techniques for Fast

Nested Barrier Synchronization, Proceedings of the 7th ACM Symposium on Parallel

Algorithms and Architectures, pages 157-164, July 1995, Santa Barbara, CA.

*Due to a clerical error, AFOSR 90-0144 was acknowledged instead of AFOSR F49620-92-J-0126.

13. F. Chen and V.L.M. Reis and I.D. Scherson, A Study of Parallel Input/Output Sub-

systems, Proceedings of the Symposium on Advanced Parallel Processsing Technologies,

September 1995.

14. C-K. Chien, Bi-directional Interconnection Networks for Massively Parallel Computers,

Ph.D. Thesis in preparation, University of California at Irvine, September 1995.

15. U. Krishnaswamy, Computer Evaluation Using Performance Vectors, Ph.D. Thesis in

preparation, University of California at Irvine, December 1995.

16. R. Subramanian, A Framework for Parallel Job Scheduling, Ph.D. Thesis in prepara-

tion, University of California at Irvine, December 1995.

17. R. Subramanian and I.D. Scherson, Networks for Multiple Disjoint Barrier Synchro-

nizations, Under submission to the International Parallel Processing Symposium, 1996.

18. V.L.M. Reis and I.D. Scherson, A Virtual Memory Model for Parallel Supercomputers,

Under submission to the International Parallel Processing Symposium, 1996

5 Personnel Supported by the Grant

Principal investigators:

• Isaac. D. Scherson

Graduate students :

• Chi-Kai Chien — graduated with Ph.D. in September '95 from University of Cali-

fornia, Irvine. Thesis title: Bi-directional Interconnection Networks for Massively

Parallel Computers.

• Umesh Krishnaswamy — expected to graduate with Ph.D. in December '95 from

University of California, Irvine. Thesis title: Computer Evaluation Using Perfor-

mance Vectors.

• Raghu Subramanian — expected to graduate with Ph.D. in December '95 from

University of California, Irvine. Thesis title: A Framework for Parallel Job

Scheduling.

8

• Vara Ramakrishnan

• Shih-Ta Huang

• Kathryn Morse

6 Significant Events

Sep 1995: Chi-Kai Chien awarded Ph.D. (University of California, Irvine). Thesis title:

Bi-directional Interconnection Networks for Massively Parallel Computers.

Jun 1994: Brian D. Alleyne awarded Ph.D. (Princeton University). Thesis title: Method-

ologies for Analysis and Design of Data Routers in Large SIMD Computers.

1994: P.I. appointed Director, Irvine Research Unit in Advanced Computing, University

of California, Irvine.

1994: P.I. appointed Professor, Information & Computer Science and Electrical &; Com-

puter Engineering, University of California, Irvine.

Jan 1993: David A. Kramer awarded Ph.D. (Princeton University). Thesis title: Efficient

Bit-Parallel Supercomputer Architectures and Algorithms.

7 Research Interactions

7.1 Advisory Consultation

We pride ourselves for being able to link our basic theoretical research to industrial problems

of practical importance. For example,

• MasPar Computer Corporation has used our results in designing the network archi-

tecture (topology and on-line algorithm) of their next-generation massively parallel

computer.

• Furthermore, the off-line routing code that we designed for the MasPar network (see

Enclosure 2) is now used by MasPar engineers for in-house applications, and has been

distributed over the Internet to MasPar users in US universities, national laboratories

and private corporations to help speedup their scientific applications.

Enclosure 1 is a letter from MasPar attesting to the success and desirability of this tech-

nology tranfer.

In addition, in 1993-94, the P.I. served as a consultant to Hughes Research Laboratories

on the subject of optical interconnects.

7.2 Distinguished Lectures by P.I.

Universities:

University de Lille, France (Jun '93, Dec '94);

UNAM, Mexico (October '94);

University of Chile (Jul '93);

ETCA-Paris, France (Jun '93);

University of Paris (Jussieu), France (Jun '93);

University of Wroclaw, Poland (May '93).

Conferences:

LATIN'95, Latin American Theoretical INformatics, Chile (April '95);

XIV International Conference of the Chilean Computer Society, Chile (Nov '94);

CIIE'94: 1st Interactive Congress on Electronics, Mexico (Oct '94);

SuperComp 94, Brazil (Sep '94);

IEEE/USP International Workshop on High Performance Computing, Brazil (Mar '94);

International Symposium on High Performance Computing, Chile (Dec '93);

Chilean Workshop on Systems Engineering, Chile (July '93);

Polish-American Symposium on Models for High Speed Computing, Poland (May '93).

Industry:

Thinking Machines Corporation, Cambridge, MA (May '92).

10

7.3 Other Professional Activities of P.I.

Program Committees:

Chair, XV International Conference of the Chilean Computer Science Society, Arica,

Chile (Nov '95)

Member, PDCS '95, Washington, DC (Oct '95);

Member, LATIN'95, Chile (Apr '95);

Member, IPPS '94, Mexico (Apr '94);

Member, IPPS '93, Newport Beach, CA (Apr '93);

Workshop Panels:

Member, IFIP - WG10.3, Concurrent Systems, International Conference on Applica-

tions in Parallel and Distributed Computing, Venezuela (Apr '94).

Member, IPPS '92, Los Angeles, CA (Apr '93);

Chair, Frontiers '92, MD (Oct '92)

11

A Data-Routing Networks

In bi-directional networks, both network inputs and network outputs are associated with

the first stage, and messages travel forward to some (possibly intermediate) stage and then

backwards, so that some stages may be traversed twice. (See Enclosure 3.)

Many prototype and commercial parallel computers (e.g., the University of Texas TRAC

1.1 and 2.0 [18, Sec. 7.3,8.2,8.3] and Thinking Machine Corporation's CM-5 [16]) use bi-

directional networks. However there is little insight into why they chose the network that

they chose. Why was that particular topology and routing algorithm most appropriate to

the situation, and no other?

We developed a methodology to answer the above kind question. The architect starts with

certain externally imposed design constraints such as the number of processors, the length

of the messages that will be sent etc.He then follows the steps of the methodology, which is

a sequence of well-defined analytical and simulations steps. At the end, he will arrive at the

best network for the given constraints. This process is illustrated in Enclosures 4 and 5.

The idea behind the methodology is to define a very general design space, and search

this space for the point of least cost that satisfies all given constraints. This idea is depicted

in Enclosure 6. Each element of design space is a (topology, routing algorthm) pair.

We allowed the "topology" component to vary over all Least Common Ancestor Networks.

(LCANs are an extremely general class of bi-directional networks, and includes (to the best

of our knowledge) every popular bi-directional network in the literature [15, 16, 18, 25] as

particular instantiations.) Similarly we let the "routing-algorithm" component vary over

circuit-switching and worm-hole routing with various buffer sizes.

Needless to say, such a methodology is a big step forward from ad hoc network design. It

yields several invaluable insights and design tradeoffs. And it may be used to anwer such non-

trivial questions as: How should the routing algorithm change if the number of processors

were to increase, or if the technology suddenly allowed more pins per chip? Further details

may be found in Chi-Kai Chien's thesis [7].

12

B Barrier-Synchronization Networks

Data parallel programs involve a form of synchronization called barrier synchronization: A

point in the code is designated as a barrier and no processor is allowed to cross the barrier

until all processors involved in the computation have reached it. Since data parallel programs

involve frequent barrier synchronizations, a computer intended to run data parallel programs

must implement them efficiently. For this purpose, current MIMD computers, including the

CM-5 and T3D, provide a dedicated barrier tree exclusively for barrier synchronizations [8,

24].

Current MIMD computers provide just one barrier tree per user application. However,

if a data parallel program has control blocks nested within one another, then it requires the

simultaneous use of more than one barrier synchronization tree, one for each level nesting.

(In some special cases, the extra barrier trees can be avoided, but this can not be counted

on.)

Since providing as many trees as the number of nestings in programs is not feasible

due to cost constraints, current machines solve this problem by also implementing barriers

in software (using shared semaphores or complicated message passing protocols). However

software barriers are usually an order of magnitude slower than hardware barriers.

We have developed two hardware schemes for supporting nested barriers using only lim-

ited hardware. The first scheme uses two single-bit-trees to support any number of nested

barriers. The method relies on code transformations, and it increases the code size. The

second scheme uses an integer-tree, which requires more expensive hardware, to support

an exponential number of nested barriers without increasing the code size. With hardware

currently available on the CM-5, this scheme can support more than four billion levels of

block-nesting in a code, which is more than will ever be required.

C Performance Evaluation

Benchmark results are often reported in terms of Mflops which help summarize the overall

performance of the benchmarked machine. However, results in terms of Mflops or benchmark

13

wall-clock times do not isolate reasons for good or bad performance, nor do they highlight

the performance of a machine in specific areas of interest, be it memory access time, cache

hit rate, time for a floating point add versus multiply, etc.

In [11] we proposed a methodology to measure detailed machine characteristics with

minimal effort (see Enclosure 7)

The basic problem in this approach involves measuring delivered execution times of ma-

chine instructions by solving a linear system of equations

Ax = t. (1)

where A = [a,-j] (i = 1,2,..., m, j — 1,2,..., n) (preferably m > n) is the number of

instructions of type j in the benchmark i and t{ is the execution time of the program i. The

unknown x can be solved by using various norm minimization techniques like regression,

optimization using linear programming. Prior work by Bard [4, 5] applied regression to

estimate the overhead for various services performed by the CP-67 operating system on IBM

360/67. Our work on measuring the performance of Sun SPARCstations matched Bard's

findings in most respects. However, they were less than satisfactory. Our experiments and

simulations showed that the solution obtained using such norm minimization techniques can

be arbitrarily far from the correct solution. This led us to approach the problem of solving

Eq. 1 from a different angle [12].

We abstract a benchmark by an (n — l)-dimensional hyperplane in üft™, its execution on

the machine being measured by an operating point which lies on this hyperplane. We can

estimate the delivered execution time of machine instructions by selecting a representative set

of intersection points, these points being defined as the points of intersection of n benchmark

hyperplanes. In 1993-94, we formalized our approach and measured the performance of a

series of Sun SPARCstations obtaining positive results [12].

During 1994-95, performance vectors for the Cray C90 were computed based on the

Perfect suite of benchmarks. These vectors were used to predict application execution time

of other applications running on the Cray C90.

Further, we defined a measure called compliance. The question is given a set of bench-

14

marks, how accurately is it possible to compute the performance vectors. This has nothing

to do with workload that the benchmarks represent. We assume that the benchmarks accu-

rately represent their respective workloads. The question is given such a set of benchmarks,

how accurately can performance predictions be made using those benchmarks. We find that

smaller benchmarks like kernels give more accurate predictions than benchmarks composed

of applications. This reveals an interesting tradeoff - while application benchmarks best rep-

resent the workload on a system, kernel benchmarks are best suited for making performance

predictions.

Additional details can be found in Umesh Krishnaswamy's thesis [13].

D Routing Algorithms

Many multistage interconnection networks, such as the Omega Network, the Flip Network,

the Baseline Network and the Reverse Baseline Network have been studied over the past 40

years. It turns out that most of these networks are close variants of each other and can be

viewed as special cases of the Delta Network [19] [14, page 736] [21].

In 1991-92 we had proposed a generalization of the traditional Delta Network called the

Expanded Delta Network (EDN) [2], in which each wire is replicated, so that more than one

message can travel between adjacent switches simultaneously. EDNs provide multiple paths

between any input-output pair, which reduces contention within the network. At the same

time, they retain the nice properties of single-path networks, such as digit controlled self

routing.

The global router in the MasPar MP-1 and MP-2 [6] is closely related to the EDN. This

enabled us to transfer several theoretical results to the MasPar, yielding significant improvements

upon their methods.

For instance, MasPar's global router has 3 stages of 64x64 switches. However, the stage

3 switches are not fully exploited. We pointed out that a simple change in the retirement of

routing tag digits to the stages allows us to "collapse" stage 3 into stage 2, thus obviating the

need for the interconnection between stages 2 and 3 and saving the complexity of 1024 wires

across the backplane. We also proved that the pruned-down the router has exactly the same

15

average performance as the original one.

The following sub-sections cover two different kinds of routing algorithms: on-line and off-

line. In an on-line algorithm, network connections are established on the fly by switches in a

distributed manner. In an off-line algorithm, network connections are pre-computed (e.g., at

compile time) by a central controller; off-line algorithms are useful when the communication

pattern to be routed is known at compile-time.

D.l On-line Routing

An important special case of an EDN is one with only two switch stages. Such a network

is easy to build, since it partitions naturally and can be realized on a system with processor

boards that communicate through a back plane without active components on the back plane

or additional boards to accommodate the network. The global network in the 16K-processor

MasPar MP-1 and MP-2 is a 2-stage EDN. The results of this subsection apply to 2-stage

EDNs only.

• All deterministic on-line algorithms known so far take O(yN) passes in the worst case.

Although most permutations take much fewer passes, the worst case permutations

tend occur in real-world applications, and make it impossible to predict running times.

We have proposed an on-line algorithm whose worst case complexity is only 0(N1^4)

passes. The algorithm chooses two evil twins cr and r, which are network-realizable

permutations that are "orthogonal" in some sense. Then the following four steps are

repeated until all messages have reached their destinations:

1. Permute the messages according to a. There is no contention in the network in

this step.

2. Attempt to send messages to their desired destinations. Unsuccessful messages

(due to contention) re-try in subsequent passes.

3. Permute the messages that remain to be delivered according to T. There is no

contention in the network in this step.

4. Attempt to send the messages to their desired destinations.

16

In other words, the algorithm preconditions the routing step with a and r alternately.

• The randomized on-line algorithm developed in [3] takes only O(log log TV) passes with

high probability. However, it involves setting each switch randomly and independently,

which is not practically feasible. For example, it is not reasonable to expect a 64 x 64

crossbar to select randomly (and uniformly) one out of 64! possible switch settings

within 50-100 nanoseconds.

This has led us to consider limited randomization, in which a switch setting is picked

randomly from a smaller set of choices. We show that if each switch can choose

only from cyclic shifts, then the above randomized algorithm still takes O(loglogTV)

passes. In other words, choosing randomly from cyclic shifts is as general as complete

randomization.

The efficacy of evil-twin and limited randomization techniques is shown in Enclosures 8,9

and 10. Further details may be found in Brian Alleyne's thesis [1].

These on-line algorithms are directly adaptable to MasPar's global router. Currently their on-

line algorithm takes 43 passes on the average, and more than 250 passes in the worst case (268

passes is the worst that we have discovered so far). In contrast, the use of evil twins or limited

randomization techniques described above reduces the average number of passes to from 43 to

29 (a 33% improvement), and reduces the worst case so drastically that it is highly improbable

that any permutation will take more than 50 passes.

Some of our on-line techniques are being incorporated in the design of MasPar's next-

generation computer.

D.2 Off-line Routing

An off-line algorithm is judged on two counts: the running time, which is the time for the

algorithm to compute the path for each message; and the routing time, which is the time for

the messages to move along the paths computed by the algorithm.

• The running time of our algorithm is 0(TVlogTV) sequentially, and 0(log2 TV) on an

TV-processor PRAM, where TV is the number of inputs to the EDN under consideration.

17

• The routing time of our algorithm is 3 passes, independent of N. This figure reduces

to 2 passes in the special case of 2-stage EDNs.

This off-line algorithm is directly applicable to MasPar's global router. We showed that any

permutation between the processors can be routed across the global router in exactly 32 passes

even in the worst case [20]. MasPar does not provide any off-line algorithm to compare our results

against; however, it is worth noting that their on-line algorithm takes 43 passes on the average

and more than 250 passes in the worst case.

We coded up the algorithm and it is currently being used by MasPar engineers for in-house

applications. The code has also been distributed to several MasPar users all over the US. (A a

copy of the code is included as Enclosure 2.)

Enclosure 1 is a letter from the Director of Architecture of MasPar, attesting to the success

and desirability of this technology-transfer.

E Dynamic Precision Algorithms

Most computer systems provide the user with a choice of a few standard floating point pre-

cisions (e.g. 32 bits and 64 bits) and scientists choose the precision that yields an acceptable

error in computation. However, it is an overkill to use the same high precision throughout

the computation. Dynamic Precision (DP) algorithms vary the precision of the data during

program execution in order to improve performance.

We proposed dynamic precision versions of numerical algorithms like Runge-Kutta method

and Muller's method [10]. The algorithms were implemented on various supercomputer ar-

chitectures such as the the MasPar MP-1 and the Cray Y-MP and we observed speed-ups of

between 1.5 and 4.

We also investigated architectures suited to implementing DP algorithms. One such

architecture is the multigauging architecture, proposed by Snyder [22] and Yang[26]. It has

the capability to divide its datapath into several datapaths, of smaller word-length, operating

in parallel. Thus, if an algorithm uses a smaller word-length, then it has a greater number

of "processors" at its disposal. When the algorithm requires smaller precision, it will run

18

faster, not only because smaller precision arithmetic is intrinsically faster, but also because

there are more processors available to complete the computation.

For lack of a real multigauging machine, we built a simulator for a multigauging machine

that we proposed called P3. The P3 is multigauging because it allows disjoint blocks of bits

within a word to be manipulated independently and in parallel.

When we ran various DP algorithms on the P3 simulator, an average speedup of 3 was

observed. This work is presented in David Kramer's thesis [9].

F Parallel Job Scheduling

The central problem considered is how to share a parallel machine among several parallel

jobs. We call this problem parallel job scheduling.

The standard way to run several sequential jobs on a uniprocessor is time-slicing or

preemption. In time-slicing, jobs take turns on the machine, and each time a job gets a turn

it resumes from where it left off the previous time.

Time-slicing translates to a parallel setting easily: now parallel jobs take turns using the

whole parallel machine. In addition, a fundamentally different possibility opens up, called

space-slicing or partitioning. In space slicing, each job is given a disjoint subset of processors

for its own dedicated use. (See Enclosure 11.)

Then, between these two extremes of time- and space-slicing, it is possible to formulate

countless hybrid policies. To give a very simple example, one might space-slice the machine

into partitions, and time-slice each partition among several jobs.

Faced with this gamut of possibilities, it is not at all clear which scheduling policy is best.

Enclosure 12 shows the scheduling policies adopted by several commercial and proposed

(paper) systems. The horizontal axis of the table indicates whether or not time-slicing is

used; and if so, which variation — gang or local (for now it does not matter what these

terms mean). The vertical axis of the table indicates whether or not space-slicing is used;

and if so, which variation — static or dynamic. We draw your attention to the fact that all

nine cells of the table are occupied by some system or the other, indicating that for each

19

scheduling policy there is some company or research group that thinks it is a good idea. In

short, there is a total lack of consensus on which scheduling policy is best.

It is this problem of finding the best scheduling policy that we address. We demonstrate

two main results:

• For static workloads, in which the set of jobs is constant (i.e., all jobs are available at

the very beginning, and run for a very long time), the best scheduling policy is pure

space-slicing.

• For dynamic workloads, in which the set of jobs varies with time and there is no

advance knowledge of when jobs will arrive and how long they will run, the best

scheduling policy is pure time-slicing.

This is, of course, a simplified phrasing of results. We have left out several details, such as

the model used for jobs and machines, and several other assumptions, simplifications, clarifi-

cations, etc. The development of these results in full detail, as well many interesting problems

that branch off from this work my be found in Raghu Subramanian's dissertation [23].

G Parallel Virtual Memory

Although well understood in traditional operating systems, virtual memory is not a reality

for Massively Parallel computers.

We are experimenting with two classes of paging policies: static and dynamic. In the

static case, each PE is responsible for a fixed subset of pages. Whenever anybody faults on

a page allocated to PE i, then it is PE i's responsibility to fetch the page from disk. In the

dynamic case, each PE is responsible for whatever pages happen to be in its memory at that

time — thus ownership of pages changes over time. Each PE services its own page faults.

However the changing ownership of a page makes it difficult to track the location of a page

when it is needed. (The dynamic page scheme is an extension of Kai Li's virtual shared

memory [17].)

Results obtained thus far point to the dynamic policy as a better choice overall.

20

References

[1] B. D. Alleyne. Methodologies for Analysis and Design of Data Routers in Large SIMD

Computers. PhD thesis, Dept. of Electrical Engineering, Princeton University, June

1994.

[2] B.D. Alleyne and I.D. Scherson. Expanded delta networks for very large parallel net-

works. In Proceedings of the International Conference on Parallel Processing, pages

1-127-131, August 1992.

[3] B.D. Alleyne and I.D. Scherson. Permutation routing in 2-stage recirculating delta

networks. In Symposium on Frontiers of Massively Parallel Computation, pages 502-

503, October 1992. Poster paper.

[4] Y. Bard. Performance criteria and measurement for a time-sharing system. IBM Systems

Journal, 3:193-216, 1971.

[5] Y. Bard and K. V. Suryanarayana. On the structure of cp-67 overhead. In Walter

Freiberger, editor, Statistical Computer Performance Evaluation, pages 329-346. Aca-

demic Press, Inc., New York, NY, 1972.

[6] T. Blank and R. Tuck. Personal communications, 1991.

[7] Chi-Kai Chien. Bi-directional Interconnection Networks for Massively Parallel Comput-

ers. PhD thesis, University of California, Irvine, December 1995.

[8] Cray Research, Inc., Eagan, MN. Cray T3D System Architecture Overview Manual,

1993.

[9] D.A. Kramer. Efficient Bit-Parallel Supercomputer Architectures and Algorithms. PhD

thesis, Dept. of Electrical Engineering, Princeton University, January 1993.

[10] D.A. Kramer and I.D. Scherson. Dynamic precision algorithms. In Symposium on

Frontiers of Massively Parallel Computation, pages 539-540, October 1992. Poster

paper.

21

[11] U. Krishnaswamy and I.D. Scherson. A methodology for performance evaluation of

supercomputers. In Proceedings of the International Parallel Processing Symposium -

Parallel Systems Fair, pages 46-49, April 1993.

[12] U. Krishnaswamy and I.D. Scherson. Measuring beyond flops. Paper in preparation,

July 1994.

[13] Umesh Krishnaswamy. Computer Evaluation Using Performance Vectors. PhD thesis,

University of California, Irvine, December 1995.

[14] T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays Trees Hy-

percubes. Morgan Kauffman, San Mateo, CA, 1991.

[15] C. Leiserson. Fat trees: Universal networks for hardware-efficient supercomputing. IEEE

Transactions on Computers, C34(10):892-901, October 1985.

[16] C. Leiserson, et al. The network architecture of the connection machine CM-5. In

Symposium on Parallel Architectures and Algorithms, pages 272-285, June 1992.

[17] Kai Li. Shared Virtual Memory on Loosely-coupled Multiprocessors. PhD thesis, Yale

University, October 1986.

[18] G.J. Lipovski and M. Malek. Parallel computing. Wiley & Sons, 1987.

[19] J. H. Patel. Performance of processor-memory interconnections for multiprocessors.

IEEE Transactions on Computers, C29(10):771-780, October 1981.

[20] I.D. Scherson and R. Subramanian. Efficient off-line routing of permutations on re-

stricted access expanded delta networks. In Proceedings of International Parallel Pro-

cessing Symposium, pages 284-290, April 1993.

[21] H. J. Siegel. Interconnection Networks for Large-Scale Parallel Processing. D. C. Heath

and Co., Lexington, MA, 1985.

[22] L. Snyder. An inquiry into the benefits of multigauge parallel computation. In Proceed-

ings of the International Conference on Parallel Processing, pages 488-492, 1985.

22

[23] Raghu Subramanian. A Framework for Parallel Job Scheduling. PhD thesis, University

of California, Irvine, December 1995.

[24] Thinking Machines Corporation, Cambridge, MA. The Connection Machine CM-5

Technical Summary, October 1991.

[25] C. L. Wu and T. Y. Feng. On a class of multistage interconnection networks. IEEE

Transactions on Computers, C29(8):694-702, August 1980.

[26] C. Yang. An Investigation of Multigauge Architectures. PhD thesis, Department of

Computer Science, University of Washington, 1987.

